端基异构效应

端基异构效应的物理原因尚未被完全理解。 多个有部分冲突的解释被提供,但是该主题仍未解决[3]。

超共轭效应

编辑

环状分子

编辑

一种广泛接受的解释是,杂原子(糖环中的内环一个)的孤对电子与轴向(环外)C-X键的σ*轨道之间存在稳定的相互作用(超共轭效应)。 这导致分子将供体的孤对电子(约180°)与σ*轨道对齐,从而降低了系统的整体能量,并提高了稳定性[4]。

一些作者还根据分子中原子量子理论的结果质疑这种超共轭模型的有效性[5]。 尽管大多数有关端基异构作用的研究本质上都是理论性的,但由于该假设提出的乙缩醛中电子密度的重新分布与已知的化学反应特别是单糖的化学性质不符, 因此对n–σ*(超共轭)假设也进行了广泛的批评[6][7]。

非环分子

编辑

超共轭效应也出现在含有杂原子(异头作用的另一种形式)的无环分子中。 如果一个分子中有一原子具有孤电子对,并且相邻的原子上有未填满的σ*轨道,便可发生超共轭效应,从而稳定该分子,形成非键共振。

偶极子最小化

编辑

端基异构效应的另一种公认解释是,赤道构型的偶極子将两个杂原子部分对齐,因此彼此排斥。相比之下,轴向配置使这些偶极子大致相对,从而代表了更稳定和更低的能量状态。

n-n排斥和C-H氢键

编辑

如果在2-甲氧基吡喃的端基异构体中心的氧上的孤对电子被显示,则对异构体构象的简要检查表明,β-异构体始终具有至少一对遮蔽的(共面1,3- 相互作用)孤对,这种n-n排斥是高能量的情况。

友情链接: